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Abstract
The problem of recovering data permutations from noisy observations is be-

coming a common task of modern communication and computing systems. We
investigate the following question on noisy data permutation recovery: Given
a noisy observation of a permuted data set, according to which permutation
was the original data sorted? Our focus is on scenarios where data is gener-
ated according to a given distribution, and the noise is additive Gaussian with
zero-mean and a given covariance matrix. We pose this problem within a hy-
pothesis testing framework, and our objective is two-fold. First, we characterize
sufficient conditions on the noise covariance matrix that ensure that the optimal
decision criterion (that is, the criterion that minimizes the probability of error)
has a complexity that is at most polynomial in the data size. Towards this end,
we focus on the linear regime, that is, the optimal decision criterion consists of
computing a permutation-independent linear function of the noisy observation
followed by a sorting operation. We find necessary and sufficient conditions
for the optimality of such a linear regime. Second, we characterize a general
expression for the probability of error and study its rate of convergence in the
linear regime for some practically relevant asymptotic regimes, such as when
the data size grows to infinity, and in the high and low noise regimes.

Problem Setting

Figure 1: Graphical representation of the considered framework.

X + N = Y, (1)
• X is the unknown n-dimensional exchangeable random vector;
• N ∼ N (0n, KN) is Gaussian noise;
• Y is the observation.
Question:

Given the observation y, according to which permutation was x sorted?
Hypothesis:

Hπ = {x ∈ Rn : xπ1 ≤ xπ2 ≤ · · · ≤ xπn}, π ∈ P , (2)

where π indicates the permutation, and P is the set of all permutations.
Example: Let n = 3, then we haveHπ, π ∈ P defined as

H{1,2,3} : X1 ≤ X2 ≤ X3, H{1,3,2} : X1 ≤ X3 ≤ X2,

H{2,1,3} : X2 ≤ X1 ≤ X3, H{2,3,1} : X2 ≤ X3 ≤ X1,

H{3,1,2} : X3 ≤ X1 ≤ X2, H{3,2,1} : X3 ≤ X2 ≤ X1.

Optimal decision rule (Optimal decoder):
Hπ̂ : π̂ = argmin

π∈P
{Pr (Hπ 6= Hπ?)}, (3)

where π? denotes the true permutation of x.
Decision region:

Rπ,KN
= {y ∈ Rn : π̂ = π}, ∀π ∈ P . (4)

Linear decision region (Linear decoder):
Rπ,KN

= AHπ + b, ∀π ∈ P , (5)

where A ∈ Rn×n and b ∈ Rn are fixed for all π ∈ P .

Figure 2: Hπ’s defined in (2) when n = 3.

Summary of Main Results

Main Results
· Theorem 1 · Theorem 2
Optimality condition for linear de-
coder when X ∼ N (0n, In) [1]

Characterization of Pc when n→
∞ when X ∼ N (0n, In) [2]

· Theorem 3 · Theorem 4
Characterization of Pe when
σ → 0 [3]

Characterization of Pe when
σ → ∞ [3]

Table 1: Summary of main results

Theorem 1. [1] Assume that X ∼ N (0n, In). Then, the following
conditions are equivalent:

1.Rπ,KN
is a permutation-independent linear transformation ofHπ;

2. 0n ∈
⋂
π∈P Rπ,KN

;

3. The ellipsoid
(
K−1
N + In

)−1
2 Bn (0n, 1) projected onto the hyper-

planeW = {x ∈ Rn : 1Tnx = 0} is an (n− 1)-dimensional ball of
radius γ for some constant γ ∈ (0, 1);

4. Let Q =
{
Q ∈ SO(n) : qn = 1√

n
1n

}
, where SO(n) is the set of

n× n orthonormal matrices, and qn is the n-th column of Q. Then,(
K−1
N + In

)−1
= Q

[
γIn−2 0n−2×2
02×n−2 S

]
QT , (6)

where Q ∈ Q, S = [ γ vv a ] and γ ∈ (0, 1), a ∈ (0, 1), v ∈ R such that
v2 < min{aγ, (1− a)(1− γ)}; and

5.Rπ,KN
= (KN + In)Hπ, for all π ∈ P .

Figure 3: An example of KN that induces the linear regime can be obtained by
considering n = 3 and (γ, a, v) = (0.5, 0.5, 0.2) in (6) in Theorem 1.

Theorem 2. [2] Assume that X ∼ N (0n, In) and N ∼ N (0n, σ
2In).

Then, the probability of correctness can be upper and lower bounded as

1

n!
≤ Pc ≤

1

n!

‖A‖2n

σn
, (7a)

where A =

[
In 0n×n
In σIn

]
∈ R2n and

‖A‖ =

(
(σ4 + 4)

1
2

2
+
σ2

2
+ 1

)1
2

. (7b)

Consequently,

lim
n→∞

log 1
Pc

log(n!)
= 1. (7c)

Theorem 3. [3] Let X consist of n i.i.d. random variables generated
according to X . Let X ′ be an independent copy of X and assume that

fX−X ′(x) <∞, ∀x ∈ R. (8)

Then,

lim
σ→0

Pe(σ)

σ
=

n−1∑
i=1

fWi

(
0+
)

√
π

, (9)

where Wi = Xi+1:n −Xi:n, i ∈ [1 : n− 1].

Example 1. Consider X ∼ Unif(a, b), 0 ≤ a < b <∞. Then,

lim
σ→0

Pe(σ)

σ
=

n(n− 1)

(b− a)
√
π
. (10)

Example 2. Consider X ∼ Exp(λ), λ > 0. Then,

lim
σ→0

Pe(σ)

σ
=
λn(n− 1)

2
√
π

. (11)

Example 3. Consider X ∼ N (0, 1). Then,
√

2n(n− 1)

6π
≤ lim
σ→0

Pe(σ)

σ
≤ n(n− 1)√

2π
. (12)

Theorem 4. [3] Let X be an exchangeable random vector such that
E[‖X‖] <∞. Then,

lim
σ→∞

Pe(∞)− Pe(σ)
1
σ

=
1√
2π

n−1∑
i=1

αiE [Wi] , (13)

where Wi = Xi+1:n −Xi:n, i ∈ [1 : n− 1] and

αi =
Vol
(
E(0n−1, i) ∩H[1:n−1]

)
Vol
(
Bn−1(0n−1, 1)

) , (14)

where B(0n−1, 1) is the (n− 1)-dimensional unit ball centered at the
origin, and E(0n−1, i) is the (n− 1)-dimensional ellipsoid centered at
the origin with unit radii along standard axes except a 1√

2
radius along

the i-th axis.
Proposition 1. [3] In the high noise regime, the convergence rate of
the probability of correctness can be bounded as

E [Rn]
√
π(n− 1)!2

n
2

≤ lim
σ→∞

Pe(∞)− Pe(σ)
1
σ

≤ E [Rn]√
2π(n− 1)!

,

where Rn = Xn:n −X1:n.
Example 1. Consider X ∼ Unif(a, b), 0 ≤ a < b <∞. Then,

E[Rn] = (b− a)(n− 1)(n + 1)−1. (15)

Example 2. Consider X ∼ Exp(λ), λ > 0. Then,

E[Rn] =
1

λ

n−1∑
k=1

1

k
= Θ

(
1

λ
log(n)

)
. (16)

Example 3. Let X be γ2-sub-Gaussian. Then,

E[Rn] ≤ 2
√

2γ2 log(n). (17)
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